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Abstract Methodologies to quantify the microstructural

homogeneity, or uniformity, have been developed based on

the proposed statistical homogeneity theory. Two kinds of

homogeneities are considered, for the size and orientation

distributions, respectively. In the case of size distribution,

the homogeneity is quantified using two parameters, H0.1

and H0.2, which are defined as the probabilities falling into

the ranges of l ± 0.1l and l ± 0.2l, respectively, where

l is the mean size. Whereas in the case of orientation

distribution, three parameters are used to quantify the

homogeneity: HR, the mean resultant length that is a simple

measure of the angular data concentration, and H0.1 and

H0.2, which are the probabilities in particular angular ran-

ges of the circular or spherical data. These homogeneity

quantities are formularized using the common statistical

models, and typical examples are demonstrated.

List of symbols

a, b, c Grain axes

COV or r/l Coefficient of variation

COV(dmean) Coefficient of variation of the mean

near-neighbor distance

C; S
� �

Coordinates of mean resultant vector

D, D0.1 and D0.2 Dispersion quantities

f Probability density function

Gv Grain homogeneity parameter

H, H0.1 and H0.2 Homogeneity quantities

HR Directional homogeneity quantity

HPq Dimensionless homogeneity parameter

K Curvature

L Length

N Total number, or measurement number

p Fitting parameter

R Mean resultant length

r Correlation coefficient

s Sample standard deviation

Usize Size uniformity

Usp Spatial uniformity

V Mean volume

x Sample mean

(x, y) Mass center

ðxG; yGÞ Mass gravity center

ðxS; ySÞ Microstructural center

a and b Fitting parameters

/ Longitude

j Fitting parameter

l Population mean

h Angle, or colatitude

q Population mean resultant length

r Population standard deviation

rga Standard deviation of the grain areas

Introduction

Currently, the material microstructures are widely studied

by different microscopy techniques, such as light micros-

copy, transmission (TEM), and scanning electron micros-

copy. With the aid of standards, it is possible to accurately

measure the dimension of the features, with resolutions at

several ångström levels in a conventional TEM. In order to

analyze the size distribution, the measurements should be

made on sufficient sampling. The available image pro-

cessing techniques, based on the threshold method, have

made it possible to provide the feature dimensions
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(diameter, perimeter, and area), mass center coordinates

(x, y), angles, and the volume or area fractions, based on a

large number of measurements.

Quantification of the material microstructure can pro-

vide a better understanding of the microstructure–property

relationship [1]. One of the quantification issues is the

evaluation of the microstructural homogeneity, or unifor-

mity. For example, if samples contain grains or particles

with different size, it is necessary to establish certain

standards to quantitatively compare their homogeneity

degrees. In the past, this homogeneity was quantified in the

following ways.

(1) Takayama et al. [2] proposed size uniformity Usize

and spatial uniformity Usp to quantify the uniformity of

grain microstructure. The Usize is defined as:

Usize ¼ 1=rga; ð1Þ

where rga is the standard deviation of the grain areas of the

intersection. To obtain Usp, a square area with length L is

selected, and then the area of each grain ai and its mass

center (xi, yi) are measured to obtain the mass gravity

center ðxG; yGÞ and the microstructural center ðxS; ySÞ as

follows:

xG ¼
X

xiai=
X

ai; yG ¼
X

yiai=
X

ai; ð2aÞ

xS ¼
X

xia
2
i =
X

a2
i ; yS ¼

X
yia

2
i =
X

a2
i : ð2bÞ

Afterward, Usp is defined as

Usp ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðxG � xSÞ2 þ ðyG � ySÞ2�

q
=L: ð3Þ

It was found that these two parameters Usize and Usp were

useful to quantify the grain size uniformity of pure iron

samples.

(2) A dimensionless homogeneity parameter HPq, the

coefficient of variation (COV), was proposed by Heijman

and coworkers [3, 4] to quantify the homogeneity of par-

ticles as follows:

HPq ¼ rq=lq: ð4Þ

Here, lq ¼ 1
N

PN
i¼1 qi and rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðqi � lqÞ2=ðN � 1Þ

q

are the mean and standard deviation of the property q over

the total number N. The property q can be area, perimeter,

or number of faces of a polygon.

(3) A parameter Gv, proposed by Sidor et al. [5, 6], was

used to quantify the grain homogeneity. It is defined as:

GV ¼
V

4
3
p a b c

¼ N2

PN

i¼1

aibici

PN

i¼1

ai

PN

i¼1

bi

PN

i¼1

ci

; ð5Þ

where V is the mean volume of grains, N the total number

of grains, and ai, bi, ci the Cartesian axes of the ith grain.

In addition to the feature size, their orientation distri-

bution is another important fact to be considered in the

microstructural quantification. Typical examples are: the

alignment of reinforcements in fabric composite materials

[7–9], grain alignment or misorientation angles [10],

crystallographic orientation between different phases [11],

orientation in wood structures [12], etc. Such orientation

distribution may play an important role in influencing the

material performance. An early work by Rigdahl et al. [13]

studied the elastic behavior of low-density paper. They

found that the paper elastic properties are related to the

sheet density, fiber modulus, mean fiber length, and fiber

orientation; and the orthortropic elastic parameters could

be estimated by the observed orientation data using von

Mises mathematical model with a good agreement. Later,

Schulgasser processed their experimental data using

wrapped Cauchy model to reveal the relationship between

the mechanical behavior and fiber orientation distribution

[14]. In composite materials, the orientation distribution of

reinforcements, such fibers, affects the material mechanical

properties significantly. Fu and Lauke [8] found that both

of the fiber length and the fiber orientation distribution had

impact on the composite strength, which increased with an

increase of fiber orientation coefficient, or a decrease of the

fiber mean orientation angle. As compared to the size

distribution, much less efforts were made so far to quantify

the homogeneity degree of the orientation distribution

dealing with the angular data.

The previous quantifications were made using specified

parameters to quantify a particular material case. The aim

of this work is to develop a statistical homogeneity theory

to provide more general methodologies to quantify the

homogeneity degrees from the statistical approach, without

any restrictions of the sample type, such as grains or par-

ticles. It focuses on two major important parts of the

microstructures, including the size and orientation distri-

butions, respectively. The methodologies are given below

along with typical examples, while the detailed particular

statistical models and formularizations are placed in

Appendices 1 and 2 for reference.

Methodology for the size distribution

In material microstructure, it is often needed to measure the

size of features using different approaches [15–22]. Based

on such size measurements, one may establish a histogram

to elucidate the size distribution using the probability

density function (PDF), f ðxÞ: If the number of measure-

ments N is sufficiently large, the sample mean x and sample

standard deviation s may be used to estimate the population

mean l and the population standard deviation r, respec-

tively, i.e., l̂ ¼ x and r̂ ¼ s; where l̂ and r̂ are the
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estimators of l and r, respectively. It is apparent that the

size distribution character is related to r, as a lower r
makes a higher degree of homogeneity. However, the

quantity r is not a good measure of the homogeneity

degree, as it has the same unit of the size, and thus the

homogeneity degrees of measurements in different units

are not comparable using r. Only with the same l, the

homogeneity degree can be compared through r.

Consider a data distribution f ðxÞ with mean l in the

entire range, we may define the homogeneity degree as the

probability within a certain data range around l, and thus

two quantities H0.1 and H0.2, in the range of l ± 0.1l and

l ± 0.2l, respectively, are obtained as follows:

H0:1 ¼
Z1:1l

0:9l

f ðxÞ � dx; H0:2 ¼
Z1:2l

0:8l

f ðxÞ � dx: ð6Þ

By this theoretical definition, the homogeneity quan-

tities, H0.1 and H0.2, are the areas under PDF in the

l ± 0.1l and l ± 0.2l range, respectively. A distribution

with higher degree of data concentration, i.e., less r, would

possess higher PDF around l, and thus it possesses higher H

values according to this definition. Note that H0.1 and H0.2

are dimensionless quantities, and thus it is possible to

compare the homogeneity degrees of measurements in

different units through H0.1 and H0.2. The previous definition

of the dispersion quantity D [23] is indeed a special case of

the homogeneity—the free-path spacing homogeneity.

In the past, different mathematical models have been

applied to simulate the size distribution. Probably, the

mostly used models are normal, lognormal, gamma, and

Weibull distributions [17]. According to these statistical

models [24], the homogeneity degrees H0.1 and H0.2 are

deduced relating to l and r, see Appendix 1, for details. It

is found that for the normal, lognormal, gamma (including

its special cases of the Erlang and chi-square), and Weibull

(including its special case of Rayleigh) distributions, the

H0.1 and H0.2 are monotonic increasing functions, with the

only variable of the ratio l=r; as plotted in Fig. 1. A higher

l, or a lower r, would result in higher H values. This is

consistent to the fact that from the measurement point of

view, larger objects look more homogeneous as compared

to the smaller objects with the same r. For example, par-

ticles with size 10 ± 5 nm look inhomogeneous, while

particles 10 lm ± 5 nm (with the same standard devia-

tion) look very homogeneous. In the extreme case, when

l!1 or r! 0;H ! 100%: To calculate H0.1 and H0.2

values using the formulas listed in Appendix 1, one may

use the sample mean x ¼
P

i

xi=N and data sample standard

deviation s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

ðxi � xÞ2=ðN � 1Þ
r

to estimate the pop-

ulation mean l and population standard deviation r,

respectively, if the number of measurements N is suffi-

ciently large, typically N [ 100.

As mentioned in the introduction, Heijman et al. [3, 4]

used the ratio HPq ¼ rq=lq as a homogeneity quantifi-

cation parameter, which has indeed an opposite meaning

of H, i.e., the lower HPq value means the higher homo-

geneity, as HPq is in the reciprocal form of the ratio l/r
used for the quantification in this article. This work

proves that such a comparison by the ratio is correct for

most of the distribution models. However, as given in

Appendix 1, for some distributions, for example, the beta

distribution when a = b, the ratio l/r is not always the

only variable of H. In this case, the H functions are no

longer monotonic and thus they have different values for a

given ratio l/r. Therefore, the comparison of the homoge-

neity degree through the ratio, either HPq or l/r, is invalid.

However, the homogeneity degrees defined through the

integrations, as expressed in Eq. 6, are not restricted to the

monotonicity nature of the functions. As a general way, one

may calculate the H values numerically by the integrating

the measured f(x) as defined in Eq. 6, even without knowing

the statistical model.

In addition to the homogeneity degree of size distribu-

tion studied here, previous nearest-neighbour distance

measurements were performed to evaluate the microstruc-

tural homogeneity of the spatial distribution of secondary

phase particles [25]. Yang et al. [26] proposed that the

coefficient of variation of the mean near-neighbour dis-

tance, COV(dmean), is a powerful parameter to identify the

microstructural homogeneity of particulate/metal matrix

composites. For a homogenous (or random) distribution,

COV(dmean) = 0.36, which increases with increasing the

inhomogeneity of clustering. Another approach on the

homogeneity of reinforcement distribution was performed

by Ganguly and Poole [27]. In fact, the evaluation of

clustering may be related to the particle spatial dispersion,

Fig. 1 Homogeneity quantities H0.1 and H0.2 as a function of l/r
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which was studied recently [23, 28, 29]. As the dispersion

quantification is a special case of the free-path spacing

homogeneity, the results presented in Appendix 1 also

serve as a supplemental work to the earlier dispersion

quantification [23].

Methodology for the orientation distribution

Distribution of 2-D circular data

Circular data are angles in the 2-D space, including axial

data (vary from 0 to p) and directional data (vary from 0 to

2p). Schematic examples of the axial data are shown in

Fig. 2a, b, where the linear features align well along a

direction (the mean direction) in Fig. 2a, but align in a less

degree in Fig. 2b. As h and h ? p are equivalent, the

measured h angle range is p. The angle distribution is

plotted on the unit circle in Fig. 2c, which only covers a

half circle. Each point on the circle represents an orienta-

tion angle.

The directional data examples are given in Fig. 2d, e,

where the feature directions are considered in Fig. 2d, or

the tangent direction distribution along a curve in Fig. 2e.

Here, the measured angle h range is 2p. The angle

distribution is plotted on the circle in Fig. 2f, which covers

the full circle.

The quantification of angular data, either axial or

directional, requires circular statistics [30–33]. An arbitrary

angle h, can be regarded as a unit vector X; or as a point on

the unit circle, with Cartesian coordinates of cosh and sinh.

By measuring the angle hi (i = 1, 2, …, N) of a number of

features, the mean direction h is the direction of the

resultant vector, R = X1 ? X2 ? _ ? XN, with a resul-

tant length R. Dividing this vector R by the number N

yields the mean resultant vector R with length R; whose

coordinates are

C ¼ 1

N

XN

j¼1

coshj; S ¼ 1

N

XN

j¼1

sinhj: ð7Þ

Thus,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2 þ S
2

q
; h ¼ tan�1ðS=CÞ if C � 0;

tan�1ðS=CÞ þ p if C \0:

�
ð8Þ

The mean resultant length R is a measure of the circular

data concentration, and 0�R� 1: When R ¼ 0; h is not

defined, which is the case of uniform (or random)

distribution; and if all hi angles are the same, R ¼ 1: This

mean resultant length value may be used to quantify the

homogeneity degree, that is,

θ

x

y

x

y

µ-0.1π

P

θ

(a)

µ-0.05πµ+
0.

05
π

µ+
0.

1π

µ

θ

H0.2

H0.1

µ-0.1π

µ-0.2π

µ+
0.

1π

µ+
0.

2π

µH0.2

H0.1

θ θ

θ θ

θ

θ

(b) (c)

(d) (e) (f)

Fig. 2 Schematic microstructures showing orientation distributions.

a The linear features align well along the mean direction; b linear

features do not aligned well; c orientation distribution of axial data on

the half circle; d alignment of directional lines; e directions of tangent

lines; f orientation distribution of directional data on the full circle
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HR ¼ R: ð9Þ

Accordingly, 0 B HR B 1. Here, we use the sample mean

resultant length R to estimate the population mean resultant

length q, assuming the measurement number N is suffi-

ciently large.

An alternative way to quantify the homogeneity is to

define the homogeneity from the PDF f ðhÞ of the circular

data, which is similar to the size distribution. For the

directional data, 0 B h\ 2p, f ðhÞ has the following

properties: f ðhÞ� 0; f ðhÞ ¼ f ðhþ 2pÞ; and
R 2p

0
f ðhÞ dh ¼

1: As shown in Fig. 3a, we define the homogeneity quan-

tities, H0.1 and H0.2, as the probabilities in the range of

l ± 0.1p and l ± 0.2p, respectively,

H0:1 ¼
Zlþ0:1p

l�0:1p

f ðhÞ dh; H0:2 ¼
Zlþ0:2p

l�0:2p

f ðhÞ dh: ð10Þ

Here, l is the mean direction of the distribution. For the

uniform (or random) distribution, f ðhÞ ¼ 1=ð2pÞ is a con-

stant, as shown by the horizontal straight line in Fig. 3a,

thus H0.1=0.1 and H0.2=0.2 under this definition, which

mean that there are 0.1 and 0.2 possibilities of the data

distributed in within l ± 0.1p and l ± 0.2p, respectively.

Hence, 0.1 B H0.1 B 1, and 0.2 B H0.2 B 1.

Consider the axial data, with 0 B h\ p. f ðhÞ obeys:

f ðhÞ� 0; f ðhÞ ¼ f ðhþ pÞ; and
R p

0
f ðhÞ dh ¼ 1: Since the

angle range [0, p) is reduced half as compared to direc-

tional data range [0, 2p), H0.1 and H0.2 are defined the

probabilities in the range of l ± 0.05p and l ± 0.1p,

respectively (Fig. 3b),

H0:1 ¼
Zlþ0:05p

l�0:05p

f ðhÞ dh; H0:2 ¼
Zlþ0:1p

l�0:1p

f ðhÞ dh: ð11Þ

Note that in the axial data case, since h and h ? p are

equivalent, its probability is doubled as compared to the

directional data. Therefore, H0.1 and H0.2 values, or the

shadowed areas in Fig. 3a and b, respectively, remain

the same for directional or axial data. In fact, doubling the

angles of the axial data converts them to the directional

data.

The quantities HR, H0.1, and H0.2 are three different

parameters that measure the homogeneity degree in dif-

ferent ways. Considering the common wrapped normal,

wrapped Cauchy, von Mises, cardioid, and triangle distri-

butions, HR, H0.1, and H0.2 are formularized in Appendix 2.

As shown in Figs. 9, 10, 11, 12, all three parameters are

monotonic functions of specific parameters, so that each of

them can quantify the homogeneity degree consistently.

Distribution of 3-D spherical data

Similar to the 2-D orientation data distribute on the unit

circle, the orientation data in the 3-D space distribute on

the unit sphere [34–36], as shown in Fig. 4. The coordi-

nates of an arbitrary orientation point, P, are denoted as

colatitude h (0 B h B p), and longitude / (0 B /\ 2p).

Rotate the system coordinate so that the mean orientation

point l reaches the z axis with its h = 0. Therefore, similar

to the 2-D circular data, the homogeneity is quantified by

the distribution around the mean orientation. Note that the

element area of the sphere surface is dS ¼ sinh dh du: As

0 B /\ 2p, we define H0.1 and H0.2 are the probabilities

only with h as the variable from 0 to 0.1p and from 0 to

0.2p, respectively,

Fig. 3 Definition of H0.1 and

H0.2 of the angular distribution,

when 0 B h\ 2p for

directional data (a) and

0 B h\p for axial data (b).

The PDF’s of uniform (random)

distributions are the horizontal

straight lines

O
θ

φ

0.1π
0.2π

H0.2

H0.1

P

x

y

z

µ

Fig. 4 Definition of H0.1 and H0.2 of the 3-D spherical data
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H0:1 ¼
Z2p

0

Z0:1p

0

f ðh;uÞsinh dh du;

H0:2 ¼
Z2p

0

Z0:2p

0

f ðh;uÞsinh dh du: ð12Þ

Particular models for f (h, /) are given in Appendix 2

for reference.

Examples

Size measurement

To demonstrate this methodology, homogeneity quantifi-

cations are made on two samples A and B, with different

size distributions. The sample A contains particles with

variable size. A representative TEM image is shown in

Fig. 5a, and the measured histogram is shown in Fig. 5b, as

compared with the calculated PDF’s using normal, log-

normal, gamma, and Weibull models, respectively. The

measurement statistics are listed in Table 1. According to

the measured ratio x=s ¼ 2:008; H0.1 and H0.2 are calcu-

lated by replacing x=s to l=r in the formulas in Appen-

dix 1, as listed in Table 2 for different models. As the

lognormal model gives the best fit, with the correlation

coefficient [37] r = 0.963, which is the highest among

others, the homogeneity of the sample A is quantified as

H0.1 = 16.5% and H0.2 = 32.9% by the lognormal model.

On the other hand, the sample B contains particles with

a more homogeneous size. A representative TEM image is

shown in Fig. 5c, and the measured histogram is shown in

Fig. 5d, with the measurement statistics listed in Table 1.

The measured ratio x=s ¼ 6:659; which is much higher that

of the sample A. Calculated H0.1 and H0.2 are listed in

Table 2, along with the correlation coefficient r of each

model. Again the lognormal gives the best fit with r =

0.965, although the r values of the gamma and normal

distributions are close to it. Therefore, the homogeneity of

the sample B is quantified as H0.1 = 49.8% and H0.2 =

82.5% by the lognormal model, which are significantly

higher than that of the sample A.

Here, we only calculate the H values from these four

statistical models. Alternatively, one may calculate the

experimental H0.1 and H0.2 values, i.e., the integrations of

the measured histograms in the range x� 0:1 x and x�
0:2 x; respectively. Therefore, if none of the existing

models fits a distribution well, it is still possible to obtain

the H values by integrating the histogram curves.

Note that here we only focus on the homogeneity

degrees in the particle size, rather than their spacing. If

one measures the spacing between these particles, the

spacing homogeneity parameters H0.1 and H0.2 become the

Fig. 5 a Representative TEM

image of the sample A with

variable size; b probability

density distributions of the

sample A; c representative TEM

image of the sample B with

homogeneous size;

d probability density

distribution of the sample B.

Arrow indicates the mean size

Table 1 Measurement statistics of samples A and B in Fig. 5

Sample x (lm) s (lm) x=s N

A 1.201 0.598 2.008 251

B 1.658 0.249 6.659 501

J Mater Sci (2010) 45:3228–3241 3233
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dispersion parameters D0.1 and D0.2, respectively, as stud-

ied previously [23].

Axial data

Rigdahl et al. [13] studied the paper fiber distribution of 14

samples. Two of them, named as sample 80:3 and 80:1,

respectively, with distinct different orientation distributions,

are used as examples here for the axial data quantification.

Their angular data were fitted using von Mises distribution,

f ðhÞ ¼ 1

pI0ðjÞ
ejcos2ðh�lÞ; ð13Þ

where I0 is given in Eq. 38. Note that this equation for axial

data is slightly different from Eq. 37 for directional data.

The parameter j, which controls the PDF shape, is found to

be j = 0.14 and 0.88 for the samples 80:3 and 80:1,

respectively, and their PDFs are plotted in Fig. 6a and b,

respectively. According to j, their homogeneity degrees

are calculated, as listed in Table 3. It is evident that the

sample 80:1 has higher homogeneity degrees over the

sample 80:3.

Based on the same experimental data, Schulgasser [14]

fitted with the wrapped Cauchy model instead, which is

expressed as:

f ðhÞ ¼ 1

p
1� q2

1þ q2 � 2qcos2ðh� lÞ: ð14Þ

The parameter q is found to be q = 0.070 and 0.374 for the

sample 80:3 and 80:1, respectively. The PDFs of the

wrapped Cauchy distribution are also plotted in Fig. 6.

Here, we add two more distribution models, wrapped

normal and cardioid distributions. Wrapped normal distri-

bution is expressed as:

f ðhÞ ¼ 1

p
þ 2

p

X1

p¼1

qp2

cos[2pðh� lÞ�: ð15Þ

Since its q\ 0.5, cardioid distribution can also be used to

model the data distribution as follows:

f ðhÞ ¼ 1

p
½1þ 2qcos2ðh� lÞ�: ð16Þ

The homogeneity degrees are calculated according to q,

as listed in Table 3. It is found that the wrapped Cauchy

Table 2 Homogeneity quantification of samples A and B in Fig. 5

Sample Normal distribution Lognormal distribution Gamma distribution Weibull distribution

H0.1 (%) H0.2 (%) r H0.1 (%) H0.2 (%) r H0.1 (%) H0.2 (%) r H0.1 (%) H0.2 (%) r

A 15.9 31.2 0.842 16.5 32.9 0.963 15.6 30.8 0.941 15.0 29.6 0.901

B 49.5 81.7 0.938 49.8 82.5 0.965 49.5 82.0 0.957 49.5 82.6 0.885

Fig. 6 Quantification of the orientation distributions of the samples 80:3 (a) and 80:1 (b)

Table 3 Homogeneity quantification of the axial data in Fig. 6

Sample HR (%) von Mises distribution Wrapped Cauchy

distribution

Wrapped normal

distribution

Cardioid distribution

j H0.1 (%) H0.2 (%) r H0.1 (%) H0.2 (%) r H0.1 (%) H0.2 (%) r H0.1 (%) H0.2 (%) r

80:3 (q = 0.070) 7.0 0.14 11.7 23.3 0.983 11.6 22.7 0.984 11.4 22.6 0.983 11.4 22.6 0.983

80:1 (q = 0.374) 37.4 0.88 20.3 39.1 0.987 21.4 40.1 0.985 17.8 34.5 0.953 17.4 34.0 0.940
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distribution gives best fit for the sample 80:3 with slightly

higher correlation coefficient r, while the von Mises

distribution gives best fit for the 80:1 sample. Using

either H parameters, the sample 80:1 possesses higher

homogeneity degrees over the sample 80:3.

Similar to the previous size measurement example, the

H0.1 and H0.2 values can also be calculated by integrations

in the measured histograms, regardless of the distribution

model.

Directional data

The example of directional data is to quantify the line

straightness, if the line is long enough to provide sufficient

directional data. As shown in Fig. 7, a carbon nanofiber in

Fig. 7a is straighter, while the one in Fig. 7b is more curved.

As mentioned about Fig. 2e previously, the lines are divided

into small sections and then the tangent direction angles at

each point are measured using the program ImageJ [38]. The

measured results are listed in Table 4, where HR is simply

quantified by R: It is evident that the angles of the straight line

in Fig. 7a are more concentrated, with HR = 97.3%, while

angles of the curved line are less concentrated, with

HR = 82.2%. As the angular data are nonsymmetrical, no

effort is made to fit them using statistical models. This

method by simply computing the HR value can be used to

evaluate single or bundle of linear features, such as nano-

tubes or nanowires [39, 40].

It is necessary to mention that, as the line straightness H

has the opposite meaning of the curvature K, so the cur-

vature can be obtained from H,

K ¼ 1� H: ð17Þ

However, the mathematical curvature is defined as:

K ¼ Dh
DL

����

����; ð18Þ

where Dh and DL are the changes of angle and arc length,

respectively, between two points. Its unit is the reciprocal

of the measured length, thus the curvature K measured

at different scale is not comparable. Besides, the

measurement Dh of two adjacent points would produce

large error in practice. However, the straightness H and

curvature (1 - H) defined in this work are dimensionless,

so they are comparable even at different scale.

Summary of the work

Based on the homogeneity theory that the homogeneity

degree is defined as the distribution probability, this work

developed statistical approaches to compute the micro-

structural homogeneity degrees. Two types of important

homogeneities are considered, for the size and orientations,

respectively.

For the size distribution, it was proposed to quantify the

homogeneity using two parameters, H0.1 and H0.2, which

are defined as the probabilities falling into the ranges of

l ± 0.1l and l ± 0.2l, respectively. These quantities are

formularized using different statistical models, as listed in

Appendix 1. In the case of normal, lognormal, gamma

(including its special cases of Erlang and chi-square), and

Weibull (including its special case of Rayleigh) distribu-

tions, the homogeneity quantities H0.1 and H0.2 are found to

be monotonic increasing functions of the ratio l/r.

Therefore, depending on data distribution type, the homo-

geneity quantities H0.1 and H0.2 can be calculated from

these equations by using x=s to replace l/r. Note that not

all distributions possess the monotonic relationship

between H and l/r, such as the beta distribution when

a = b. In this case, it is impossible to give the H values

from the ratio l/r, i.e., a comparison of the homogeneity

Fig. 7 Quantification of a

straighter fiber in (a) and a

curved fiber in (b)

Table 4 Quantification of the directional data in Fig. 7

Sample Measurement Straightness,

HR (%)

Curvature,

1 - HR (%)
C S N

Straight fiber

in Fig. 7a

0.8636 0.4478 95 97.3 2.7

Curved fiber

in Fig. 7b

0.8063 0.1576 112 82.2 19.8
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solely by the ratio l/r or HPq is invalid. However, as a

general way, the H values can be calculated by integrating

f(x) numerically as defined in Eq. 6.

For the orientation distribution, three parameters of HR,

H0.1 and H0.2 were defined. Either of them can quantify the

homogeneity degree consistently. The first one HR is a

simple measure of the homogeneity of the angular data;

while H0.1 and H0.2 are defined as the probabilities within

certain angular data range as follows. (1) In case of 2-D

circular data, if 0 B h\ 2p (directional data), H0.1 and H0.2

are defined as the probabilities within l ± 0.1p and

l ± 0.2p, respectively; while if 0 B h\ p (axial data), H0.1

and H0.2 are defined as the probabilities within l ± 0.05p
and l ± 0.1p, respectively. Therefore, one may denote the

angle range of H0.1 and H0.2 as l ± 0.05Dh and l ± 0.1Dh,

respectively, where Dh = p or Dh = 2p for axial or direc-

tional data, respectively. These quantities are formularized

in Appendix 2. (2) In case of 3-D spherical data, H0.1 and

H0.2, are defined as probabilities for the colatitude h range

within 0.1p and 0.2p, respectively, from the mean direction

l. These quantities are also formularized in Appendix 2.

It is expected that the methodologies for the homogeneity

quantification proposed in this article may be applicable

beyond the scope of material microstructure. For example,

the size homogeneity of objects seen in our daily life can be

quantified in the same way as seen in the microscopic ima-

ges. In fact, the linear feature quantification, as presented in

Fig. 7, is similar to the case of the sedimentary structure

along Vermilion River [36, 41] for earth science application.

Generally, the H parameters defined in this work can

quantitatively compare the homogeneity of any distribution,

regardless of the object type.

Acknowledgement The author thanks three reviewers for their

in-depth critical comments and constructive suggestions to improve

this article.

Appendix 1: Size distribution

Normal and lognormal distribution

The normal and lognormal distributions were studied pre-

viously [23]. For a normal distribution,

H0:1 ¼ 6:8843� 10�5 þ 7:964� 10�2ðl=rÞ
þ 1:043� 10�4ðl=rÞ2 � 1:6286� 10�4ðl=rÞ3

þ 3:8639� 10�6ðl=rÞ4 ðr ¼ 1Þ; ð19aÞ

H0:2 ¼ �4:0117� 10�4 þ 0:16056ðl=rÞ
� 2:8118� 10�4ðl=rÞ2 � 1:1826� 10�3ðl=rÞ3

þ 5:6084� 10�5ðl=rÞ4 ðr ¼ 1Þ: ð19bÞ

For a lognormal distribution,

H0:1 ¼ 1:1539� 10�2 þ 7:5933� 10�2ðl=rÞ
þ 6:6838� 10�4ðl=rÞ2 � 1:9169� 10�4ðl=rÞ3

þ 3:9201� 10�6ðl=rÞ4 ðr ¼ 0:99998Þ; ð20aÞ

H0:2 ¼ 2:266� 10�2 þ 0:15629ðl=rÞ
þ 4:442� 10�4ðl=rÞ2 � 1:2738� 10�3ðl=rÞ3

þ 5:9978� 10�5ðl=rÞ4 ðr ¼ 0:99996Þ: ð20bÞ

Gamma distribution

The density distribution of a gamma distribution is defined

by

f ðxÞ ¼
b�a

CðaÞx
a�1e�x=b; if x [ 0;

0; if x � 0:

�
ð21Þ

Its mean and variance are

l ¼ ab; r2 ¼ ab2: ð22Þ

Here, the gamma function C(a) in Eq. 21 is expressed as

CðaÞ ¼
R 1

0
ta�1e�t dt: The probability distribution func-

tion for the gamma distribution is F(x) = 0 for x B 0 and

FðxÞ ¼ cðxb; aÞ for x [ 0. Here, c is the incomplete gamma

function, cðx; aÞ ¼ 1
CðaÞ
R x

0
ta�1e�t dt; whose value can be

found in statistical references or online programs.

From Eq. 22, l=r ¼
ffiffiffi
a
p

; thus a ¼ ðl=rÞ2: Hence, the

homogeneity

H0:1 ¼ Fð1:1lÞ � Fð0:9lÞ ¼ cð1:1a; aÞ � cð0:9a; aÞ
¼ c½1:1ðl=rÞ2; ðl=rÞ2� � c½0:9ðl=rÞ2; ðl=rÞ2�; ð23aÞ

H0:2 ¼ Fð1:2lÞ � Fð0:8lÞ ¼ cð1:2a; aÞ � cð0:8a; aÞ
¼ c½1:2ðl=rÞ2; ðl=rÞ2� � c½0:8ðl=rÞ2; ðl=rÞ2�: ð23bÞ

From these two equations, H0.1 and H0.2 are functions of a

single variable l/r. For convenience, they are regressed as

H0:1 ¼ �8:1378� 10�3 þ 8:2576� 10�2ðl=rÞ
� 1:335� 10�4ðl=rÞ2 � 1:7388� 10�4ðl=rÞ3

þ 5:3408� 10�6ðl=rÞ4 ðr ¼ 0:99999Þ; ð24aÞ

H0:2 ¼ �1:7039� 10�2 þ 0:16844ðl=rÞ
� 9:1716� 10�4ðl=rÞ2 � 1:2346� 10�3ðl=rÞ3

þ 6:1571� 10�5ðl=rÞ4 ðr ¼ 0:99997Þ: ð24bÞ

Note that the gamma distribution yields a special case of

Erlang distribution when a = k is an integer, or the chi-

square distribution when a = m/2 and b = 2 [24]. As H0.1

and H0.2 are only related to the ratio l/r but not related to

specific a or b, the homogeneity equations, as expressed in

Eqs. 23a, 23b and 24a, 24b, remain valid for both Erlang

and chi-square distributions.
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Weibull distribution

The density distribution of a Weibull distribution is defined

by:

f ðxÞ ¼ ab�axa�1e�ðx=bÞ
a

; if x [ 0;
0; if x � 0:

�
ð25Þ

Its mean and variance are

l¼bC
aþ1

a

� �
; r2¼b2 C

aþ2

a

� �
�C2 aþ1

a

� �� 	
: ð26Þ

Thus, we have

ðl=rÞ ¼
C aþ1

a

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C aþ2

a

� �
� C2 aþ1

a

� �q ; or
1þ ðl=rÞ2

ðl=rÞ2
¼

C aþ2
a

� �

C2 aþ1
a

� �:

ð27Þ

From Eq. 27, the relationship between a and (l/r) can be

established, and their relationship is expressed as:

a ¼ 8:8947� 10�2 þ 0:8434ðl=rÞ þ 0:10306ðl=rÞ2

� 1:0683� 10�2ðl=rÞ3

þ 4:0045� 10�4ðl=rÞ4 ðr ¼ 1Þ: ð28Þ

The probability distribution function for the Weibull

distribution is F(x) = 0 for x B 0 and FðxÞ ¼ 1� e�ðx=bÞ
a

for x [ 0. Therefore, the homogeneity degree of the

Weibull distribution is:

H0:1 ¼ Fð1:1lÞ � Fð0:9lÞ ¼ e�ð0:9l=bÞa � e�ð1:1l=bÞa

¼ e� 0:9C aþ1
að Þ½ �a � e� 1:1C aþ1

að Þ½ �a ; ð29aÞ

H0:2 ¼ Fð1:2lÞ � Fð0:8lÞ ¼ e�ð0:8l=bÞa � e�ð1:2l=bÞa

¼ e� 0:8C aþ1
að Þ½ �a � e� 1:2C aþ1

að Þ½ �a : ð29bÞ

Here, l=b ¼ C aþ1
a

� �
according to Eq. 26. For a given l/r,

the value a can be evaluated from Eq. 28, and thus H0.1 and

H0.2 can be calculated. For convenience, these equations

are regressed as:

H0:1 ¼ 2:0549� 10�3 þ 6:9954� 10�2ðl=rÞ
þ 2:6087� 10�3ðl=rÞ2 � 3:663� 10�4ðl=rÞ3

þ 1:0206� 10�5ðl=rÞ4 ðr ¼ 1Þ; ð30aÞ

H0:2 ¼ 5:975� 10�3 þ 0:13709ðl=rÞ
þ 7:1542� 10�3ðl=rÞ2 � 1:8982� 10�3ðl=rÞ3

þ 7:6268� 10�5ðl=rÞ4 ðr ¼ 1Þ: ð30bÞ

Note that the Weibull distribution yields a special case,

Rayleigh distribution, by taking a = 2 and b ¼
ffiffiffi
2
p

g [24].

As H0.1 and H0.2 are not related to specific a or b values

in these H equations, they can also be used for the

homogeneity quantification of the Rayleigh distribution.

Beta distribution

The beta distribution is defined as:

f ðxÞ ¼ 1

Bða; bÞx
a�1ð1� xÞb�1; 0\x\1; ð31Þ

where a and b are two independent fitting parameters, and

B(a,b)=C(a)C(b)/C(a?b). Its mean l ¼ a=ðaþ bÞ and var-

iance r2 ¼ ab=½ðaþ bÞ2ðaþ bþ 1Þ�; and thus ðl=rÞ2 ¼
aðaþ bþ 1Þ=b: For a given pair of a and b, particular H

values can be computed numerically by integrating f ðxÞ in

Eq. 31 over the range of l ± 0.1l or l ± 0.2l. Figure 8

shows some of the computation results of the beta

distribution for 0 \ a, b B 10, as plotted as H versus

ðl=rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ bþ 1Þ=b

p
: The normal distribution is

included for comparison. Different to the previous

distributions, the homogeneity parameters H0.1 and H0.2

here are functions of the ratio l/r as well as a (or b), i.e.,

for a given l/r, H0.1, and H0.2 are no longer monotonic but

may possess different values depending on a or b. Only

when a = b, H0.1 and H0.2 are monotonic functions of l/r,

which as expressed as:

H0:1 ¼ �0:19399 þ 0:2557ðl=rÞ � 0:072226ðl=rÞ2

þ 1:5503� 10�2ðl=rÞ3 � 1:8411� 10�3ðl=rÞ4

þ 1:1168� 10�4ðl=rÞ5 � 2:7194� 10�6ðl=rÞ6

ðr ¼ 0:99999Þ; ð32aÞ

H0:2 ¼ �0:3923þ 0:51722ðl=rÞ � 0:14489ðl=rÞ2

þ 3:0054� 10�2ðl=rÞ3 � 3:6426� 10�3ðl=rÞ4

þ 2:2641� 10�4ðl=rÞ5 � 5:604� 10�6ðl=rÞ6

ðr ¼ 0:99998Þ: ð32bÞ

Fig. 8 Homogeneity quantities H0.1 and H0.2 of the beta distribution,

as compared with the normal distribution. Each dot corresponds to a

pair of (a, b) values (not shown), while a special case with a = b is

highlighted
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As shown in Fig. 8, the H values with a = b are high-

lighted, which are getting close to the normal distribution

at higher ratio l/r.

Moreover, the homogeneity H functions of the uniform,

exponential, Laplace, Pareto, or any other distributions [24]

can be formularized from their specific integration forms,

while these models are not commonly used for the size

distribution modeling.

Appendix 2: Orientation distribution

Circular data

Wrapped normal distribution

The density distribution of the wrapped normal distribution

is described as

f ðhÞ ¼ 1

2p
þ 1

p

X1

p¼1

qp2

cos½pðh� lÞ�;

0� h \2p; 0� q � 1: ð33Þ

Its mean is l, and mean resultant length is q. By numerical

computation, the relationship of HR, H0.1, and H0.2 with q
are obtained, as shown in Fig. 9, which are expressed as

follows:

HR ¼ q; ð34aÞ

H0:1 ¼ 0:10011þ 0:047109qþ 4:4886q2 � 45:267q3

þ 216:03q4 � 549:16q5 þ 766:28q6 � 553:37q7

þ 161:92q8 r ¼ 0:99995ð Þ; ð34bÞ

H0:2 ¼ 0:19979þ 0:6295q� 7:1152q2 þ 67:738q3

� 305:85q4 þ 738:89q5 � 977:14q6 þ 667:18q7

� 183:52q8 r ¼ 0:99997ð Þ: ð34cÞ

Wrapped Cauchy distribution

The density distribution of the wrapped Cauchy distribu-

tion, with mean direction l and mean resultant length q, is

described as:

f ðhÞ ¼ 1

2p
1� q2

1þ q2 � 2q cosðh� lÞ;

0� h \2p; 0� q � 1: ð35Þ

The relationships of HR, H0.1 and H0.2 with q are shown

in Fig. 10, which are expressed as follows:

HR ¼ q; ð36aÞ

H0:1 ¼ 0:1þ 0:25447q� 0:57728q2 þ 4:1115q3

� 9:2654q4 þ 10:617q5 � 4:2392q6

ðr ¼ 0:99999Þ; ð36bÞ

H0:2 ¼ 0:2þ 0:36274qþ 0:45329q2 � 0:56551q3

þ 1:8836q4 � 0:8692q5 þ 0:53479q6

r ¼ 1ð Þ: ð36cÞ

von Mises distribution

The widely used von Mises distribution, with mean direc-

tion l, is described by a density function of

f ðhÞ ¼ 1

2p I0ðjÞ
ej cosðh�lÞ; 0� h\2p; 0� j\1; ð37Þ

where I0 denotes the modified Bessel function of the first

kind, with order 0 (p = 0). In general with the order p, it is

defined by

Fig. 9 Homogeneity H of wrapped normal distribution

Fig. 10 Homogeneity H of wrapped Cauchy distribution
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IpðjÞ ¼
1

2p

Z2p

0

cos ph ej cos hdh; or

IpðjÞ ¼
X1

r¼0

1

Cðpþ r þ 1ÞCðr þ 1Þ
j
2


 �2rþp

: ð38Þ

Its mean resultant length is q ¼ I1ðjÞ=I0ðjÞ: According to

these relationships, HR, H0.1, and H0.2 are numerically

computed, as shown in Fig. 11. In the range of j B 20 that

covers most practical values, they are expressed as:

HR ¼ q ¼ 0:62021j� 0:18640j2 þ 3:1477� 10�2j3

� 3:177� 10�3j4 þ 1:9433� 10�4j5

� 6:9914� 10�6j6 þ 1:3417� 10�7j7

� 1:0355� 10�9j8 ðr ¼ 0:99955Þ; ð39aÞ

H0:1 ¼ 0:1þ 0:12268j� 3:56� 10�3j2

� 3:1725� 10�3j3 þ 7:3794� 10�4j4

� 7:7475� 10�5j5 þ 4:3665� 10�6j6

� 1:2782� 10�7j7 þ 1:527� 10�9j8

ðr ¼ 0:99996Þ; ð39bÞ

H0:2 ¼ 0:2þ 0:23837j� 2:1741� 10�2j2

� 3:3761� 10�3j3 þ 1:1134� 10�3j4

� 1:2683� 10�4j5 þ 7:4053� 10�6j6

� 2:2105� 10�7j7 þ 2:674� 10�9j8

ðr ¼ 0:99978Þ: ð39cÞ

Cardioid distribution

The cardioid distribution, with a mean direction at l, has

the density function as follows:

f ðhÞ ¼ 1

2p
½1þ 2q cosðh� lÞ�; 0� h\2p; qj j � 1

2
:

ð40Þ

Its mean resultant length is q, thus

HR ¼ q: ð41aÞ

According to Eq. 40, the density function at q = 0.5, 0,

-0.5 are shown in Fig. 12a. When q = 0.5, the maximum f

is at h = 0, so l = 0. Therefore, H0.1 and H0.2 include

areas on the right side of h = 0 and left side of h = 2p, as

shown in the shadowed areas in Fig. 12a. While when

q = -0.5, H0.1 and H0.2 are obtained from the areas with

l = p. Along with HR, the calculated results of H0.1 and

H0.2 are shown in Fig. 12b, which are computed as:

H0:1 ¼ 0:1þ 0:19673 qj j ðr ¼ 1Þ; ð41bÞ
H0:2 ¼ 0:2þ 0:374196 qj j ðr ¼ 1Þ: ð41cÞ

Triangle distribution

The triangle distribution, with mean direction at l, has the

density function as follows [33]:

f hð Þ ¼ 1

8p
4� p2qþ 2pqjp� h
� �

;

0� h \2p; 0� q� 4

p2
: ð42Þ

Fig. 11 Homogeneity H of von Mises distribution

Fig. 12 PDF (a) and homogeneity H (b) of cardioid distribution
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From this function, it is computed that

HR ¼ q; ð43aÞ
H0:1 ¼ 0:1þ 0:22209q ðr ¼ 1Þ; ð43bÞ
H0:2 ¼ 0:2þ 0:39522q ðr ¼ 1Þ: ð43cÞ

For other distribution models, HR, H0.1, and H0.2 then

can be computed in similar ways. Even when the q of a

model is not available, for example, the nonsymmetrical

models given by Fu and Lauke [8], the H0.1 and H0.2 can be

calculated numerically.

Spherical data

Fisher distribution

The density function of Fisher distribution [35], with mean

direction along the z axis, is expressed as:

f ðh;uÞ ¼ ðj=4psinhjÞexp(jcoshÞsinh; ð44Þ

where j is the concentration parameter, which controls the

curved shape, as plotted for some values in Fig. 13a. Its

HR ¼ q ¼ cothj� 1=j: ð45aÞ

Accordingly, the H values are calculated for different j
(Fig. 13b), and regressed as:

H0:1 ¼ 1:2994� 10�2 þ 4:4163� 10�2j

� 5:0189� 10�4j2 � 2:6177� 10�5j3

þ 1:3518� 10�6j4 � 2:9028� 10�8j5

þ 3:335� 10�10j6 � 1:9918� 10�12j7

þ 4:8533� 10�15j8 r ¼ 0:99999ð Þ; ð45bÞ

H0:2 ¼ 0:060241þ 0:15876j� 1:1775� 10�2j2

þ 4:8757� 10�4j3 � 1:2163� 10�5j4

þ 1:8637� 10�7j5 � 1:7134� 10�9j6

þ 8:6621� 10�12j7 � 1:8495� 10�14j8

r ¼ 0:99987ð Þ: ð45cÞ

Watson distribution

The density function of Watson distribution [35], with

mean direction along the z-axis, is expressed as

Fig. 13 PDF (a) and homogeneity H (b) of Fisher distribution

Fig. 14 PDF (a) and homogeneity H (b) of Watson distribution

3240 J Mater Sci (2010) 45:3228–3241

123



f ðh;uÞ ¼ CWexp(jcos2hÞsinh; ð46Þ

where CW ¼ 1=½4p
R 1

0
exp(ju2Þdu�. When j C 0, the

distribution f is plotted in Fig. 14a, with H0.1 and H0.2

areas indicated. As the another half at the supplementary

angle (p - h) in not included, the maximum H value is 0.5.

Its q is not available. However, the H quantities are

calculated numerically as shown in Fig. 14b for

0 B j B 40, which are expressed as:

H0:1 ¼ 2:469� 10�2 þ 1:2754� 10�2j

þ 7:0861� 10�3j2 � 1:1119� 10�3j3

þ 8:2392� 10�5j4 � 3:5013� 10�6j5

þ 8:6587� 10�8j6 � 1:1573� 10�9j7

þ 6:4609� 10�12j8 r ¼ 1ð Þ; ð47aÞ

H0:2 ¼ 9:5345� 10�2 þ 4:3964� 10�2j

þ 1:4318� 10�2j2 � 3:9435� 10�3j3

þ 4:3047� 10�4j4 � 2:6193� 10�5j5

þ 9:5653� 10�7j6 � 2:0844� 10�8j7

þ 2:5002� 10�10j8 � 1:2709� 10�12j9

r ¼ 0:99997ð Þ: ð47bÞ
However when j\ 0, as plotted in Fig. 14a, the f

maximum value is at 0.5p, i.e., at the equator, which is the

girdle case. It is more reasonable to define the homoge-

neity, denoted as H0, around 0.5p, as shown in Fig. 14a.

Within -40 B j\ 0, the H0 is expressed as:

H
0

0:1 ¼ 0:15391 � 5:833� 10�2j� 3:2517� 10�3j2

� 1:3384� 10�4j3 � 3:4286� 10�6j4

� 4:7827� 10�8j5 � 2:7634� 10�10j6

ðr ¼ 1Þ; ð48aÞ

H
0

0:2 ¼ 0:30501 � 0:10639j� 8:3415� 10�3j2

� 3:9327� 10�4j3 � 1:0983� 10�5j4

� 1:6572� 10�7j5 � 1:0359� 10�9j6

ðr ¼ 0:99999Þ: ð48bÞ
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